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The dispersion equation for longitudinal oscillations in an infinite collisionless anisotropic plasma in a 
uniform magnetic field is investigated. It is shown that nonoscillating, exponentially growing modes cannot 
exist in a plasma whose equilibrium distribution function is a two-temperature Maxwellian. This is demon­
strated by showing that the dispersion equation has no solution under these conditions. The Nyquist criterion 
for plasma instability is also invoked to prove that all longitudinal modes propagating along the magnetic 
field in such a plasma are stable. 

IN a previous publication,1 henceforth referred to as 
Part I, we had investigated the stability of longi­

tudinal plasma oscillations in an infinite collisionless 
plasma in which the particles have anisotropic velocity 
distributions. More explicitly we had shown that purely 
growing (in time) modes with frequencies of the order 
of the ion cyclotron frequency and propagation at an 
angle to the uniform magnetic field cannot exist in a 
plasma in which the electrons are isotropic and the ions 
are anisotropic with a temperature ratio TX/TU>1. 
Here Th and Tu refer to the ion temperatures perpen­
dicular and parallel to the field, respectively. In this 
paper we shall remove these restrictions and demon­
strate that anisotropic plasma is perfectly stable against 
purely growing longitudinal modes. Such nonoscillating 
and exponentially growing modes are found, for example, 
in the gravitational Rayleigh-Taylor instability.2 This 
implies that unstable longitudinal oscillations in aniso­
tropic plasma—if they exist—are necessarily of the 
"overstable"3 kind. In addition, we shall demonstrate 
that all longitudinal modes traveling along the mag­
netic field are also stable. 

We recall from Part I that we are considering an 
infinite collisionless plasma in a uniform magnetic field 
Bo taken conveniently along the z direction. We assume 
that, in equilibrium configuration, the particles have a 
velocity distribution given by 
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where aL and az are the particle thermal velocities 
perpendicular and parallel to the field, respectively, and 
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that there is no electric field E0. We further assume that 
the system departs only slightly from equilibrium, and 
that all perturbations are of the form exp\jk»r-\-ioof\, 
where co is the frequency and k is the wave number. In 
this case, the dispersion equation for longitudinal oscil­
lations can be readily obtained from the linearized 
Vlasov equations and has the form1 
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where, as before, wp is the plasma frequency, o)c is the 
cyclotron frequency, X=!(Y%J.2), V^kp, ni=kL/ky 

nz=kz/k, p is the particle radius of gyration, kL and 
kz are the components of the wave vector perpendicular 
and parallel to the field, respectively, and the first sum­
mation is .over the plasma species. The function Y(— £) 
is the familiar dispersion function4 usually defined by 
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where 

2 rx 

erfc(i£) = / <rv' >dy, 
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and 7n(X) = 7n(X) is the Bessel function of the first kind 
of imaginary argument. We now depart from the analy­
sis pursued in Part I, and simply utilize the second of 
Eqs. (3) along with known properties of the Bessel 

4 B. D. Fried and S. D. Conte, The Plasma Dispersion Function 
(Academic Press Inc., New York, 1961). 
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function Jn(\) to transform Eq. (2) into the form 
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where the subscripts e and i denote electrons and ions, 
respectively. In Eq. (4) di is the Debye length denned 
in terms of the ion temperature, i.e., di2=KTXe/4:7rNe2, 
where K is the Boltzmann constant and N is the particle 
number density; coe=u/o)Ce, co;=coi=co/coct-, te

2—Tze/Tie, 
and h2= T,i/Tu. If we multiply Eq. (4) by Tle/Txi and 
let ti2—te

2z=l, we obtain the equation derived by 
Bernstein5 for longitudinal oscillations in a plasma in 
which the electrons and the ions are isotropic but not in 
equilibrium with one another. We now consider the 
first integral in (4) and choose to put it in the form 
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where we have made use of the fact that nz
2+nx

2~l. 
Assuming that io)e has a positive real part, and inte­
grating by parts, we get 
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A similar expression may be written for the integral con­
taining the ion terms. With (ye2)Tu/TiB=(yf)M0/Mi, 
and letting iwe=i/3e+*'e, itoi=iPi+vi with ve>0 and 

*>t>0, we can finally write for Eq. (4), 
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For pe=l3i=0, i.e., purely growing longitudinal modes, 
it is now possible to show that Eq. (6) has no solution. 
Consider first integrals of the type 

)= / xexp — vx-~\(yH2nz
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2/J 
\dx. 

Since the limits of integration are from zero to infinity, 
it is readily seen that such integrals are positive definite. 
Consider next the second type of integrals in Eq. (6), 
namely 
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The periodic functions sinx and ecoax which appear in 
the integrand of Eq. (7) have the same periodicity. 
Moreover, in the interval from x=0 to x= 2ir the product 
sinx0Xcos:c is antisymmetric about x=w, and the area 
under such a curve is identically zero. In Eq. (7), how­
ever, this product is multiplied by an exponentially 
decreasing function of x which makes the area in the first 
half of the cycle—the positive area—larger than that in 
the second half—the negative area. Since the integral 
from x=0 to x= oo can be viewed as sum of integrals of 
the limits, it is clear that such an integral has a positive 
definite value. In view of this and the previous argu­
ment, the right-hand side of the dispersion Eq. (6) is 
always positive definite. Since the left-hand side is 
negative definite, it is evident that the equation has no 
solutions with v (or co) > 0 and hence no purely growing 
modes. 

The results of the above section are particularly 
useful in the investigation of the stability of all longi­
tudinal modes which propagate along the magnetic 
field. We utilize these results in connection with the 
Nyquist criterion6 which we now employ to ascertain 

«L B. Bernstein, Phys. Rev. 109, 10 (1958). 
6 J. D. Jackson, J. Nucl. Energy, Pt. C 1, 171 (1960). 



A134 T . K A M M A S H A N D W. H E C K R O T T E 

Re a> = /3 

FIG. 1. Nyquist diagram. 

the stability of these modes. We find it convenient first 
to rewrite the dispersion Eq. (6) in the form 
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where we have replaced 2k2di/y2 by its equivalent 
VA2/C2, and where VA is the Alfven speed and c is the 
velocity of light. We observe that F(co) is analytic in 
the lower half of the complex co plane. We further note 
that the zeros of F(u>) occur in pairs which are mirror 
images of one another, i.e., if cor is a root then (icor)*, 
where * denotes the complex conjugate, is also a root. 
In view of this we need to examine only one quadrant 
in the lower half of the co plane for instability. Consider 
therefore the closed contour C which encompasses the 
whole fourth quadrant shown in Fig. 1(a). This curve 
can then be mapped into a closed curve such as D in 
the complex F plane shown in Fig. 1(b). Asa consequence 
of Cauchy's theorem the number of zeros of F(<a) inside 
the contour C is equal to the number of times the curve 
D encloses the origin. We have already demonstrated 
that F(o)) is positive definite for all co's which are 
negative imaginary, i.e., along line gl in Fig. 1(a). This 
is equivalent to saying that the line gl in the co plane 
maps into the line g'V in the F plane. 

Moreover, it is a simple matter to show that F(co) 
tends toward VA2/C2 for co's along the arc hi as its radius 
tends to infinity. In view of this we need to examine 
F(co) for real co's only, i.e., for all /3's from zero to infinity. 
To do this, we return to Eq. (8) and replace icoe and 

icoi by ipe and ifii, respectively, and set ni=0 (propaga­
tion along the field). I t becomes 
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Performing the integrations and rearranging we obtain 
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where Y(J3 \ yt) is the plasma dispersion function defined 
earlier. At this point it is sufficient to examine only the 
imaginary part of (10) to determine whether the closed 
curve in the F plane encloses the origin. We recall that 
for a real argument—such as we have here—the imagi­
nary part of the dispersion function Y is given by4 

I m F ( —J = f(V7r)*expr 1 (11) 

so that the imaginary part of F(co) can be written as 
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I t is clear that the ImjF(w) is negative for all positive 
/3's and for all values of the parameters, 7, t, MjMi 
which are always positive. F(a>) cannot, therefore, en­
circle the origin since this requires one or more changes 
in the sign of its imaginary part. Thus roots in the lower 
half of the co plane do not exist and longitidinal oscilla­
tions propagating along the magnetic field are com­
pletely stable. 
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